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Abstract 

With the United States’ push towards using unmanned aerial vehicles (UAVs) for 

more military missions, wide area search theory is being researched to determine the 

viability of multiple vehicle autonomous searches over the battle area.  Previous work 

includes theoretical development of detection and attack probabilities while taking into 

account known enemy presence within the search environment.  Simulations have been 

able to transform these theories into code to predict the UAV performance against known 

numbers of true and false targets.  The next step to transitioning these autonomous search 

algorithms to an operational environment is the experimental testing of these theories 

through the use of surrogate vehicles, to determine if the guidance and control laws 

developed can guide the vehicles when operating in search areas with true and false 

targets.  In addition to the challenge of experimental implementation, dynamic scaling 

must also be considered so that these smaller surrogate vehicles will scale to full size 

UAVs performing searches in real world scenarios.  

This research demonstrates the ability of a given sensor to use a basic ATR 

algorithm to identify targets in a search area based on its size and color.  With this ability, 

the system’s target thresholds can also be altered to mimic real world UAV sensor 

performance.  It also builds on previous dynamic scaling studies to show that the 

performance of a full size UAV can be imitated using a surrogate vehicle.  Further 

investigation will show sensor orientation, field of view, vehicle geometry, and the 

known size of the target can be used to determine target pixel thresholds as well as the 

vehicle steering correction angle to navigate directly over the centroid of an identified 

target.   
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DEVELOPMENT OF AN EXPERIMENTAL PLATFORM FOR TESTING 
AUTONOMOUS UAV GUIDANCE AND CONTROL ALGORITHMS 

 
 
 
  

1. Introduction 

 
 
 

1.1 Motivation for Autonomous Cooperative Control of UAVs 

1.1.1 Current Search and Destroy Mission 
 

Since the end of the Cold War, the United States has found itself locked in urban 

warfare and completing military missions other than war at a faster pace than ever before.  

As a result, tactics once used in the open battlefield are no longer considered viable when 

fighting against enemies without uniforms in large, mostly civilian, urban settings.   One 

current technology push to give the U.S. Armed Forces an advantage over their enemies 

in this type of environment is the development of autonomous unmanned aerial vehicles 

(UAV) and autonomous unmanned micro aerial vehicles (MAV).  To best allocate these 

invaluable resources in a battlefield setting, cooperative control of multiple UAVs & 

MAVs is being explored at the Air Force Institute of Technology.  Some benefits of using 

cooperative UAV fleets include search redundancy, capability to search larger areas 

quicker, multiple targets can be simultaneously tracked, and operators can be kept out of 

the extreme danger of some of today’s urban war zones.   Also, as suggested by three 

researchers at Colorado State University (Richards, Whitley, and Beveridge, 2005), if the 
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UAV used for a particular mission is prone to failure, it might be cheaper to use multiple 

inexpensive UAVs instead of one costly search system.   

As mentioned above, the current enemies of the United States and its allies do not 

follow established rules of war, and thus it is possible for almost any vehicle, building, or 

person on the ground in a region of conflict to be a target.  When terrorists use hospitals 

or mosques as their hideouts or hide behind women and children, the line between 

civilian infrastructure and legitimate targets, according to the rules of war, becomes 

murky.  To ensure collateral damage is minimized in this type of situation, UAVs must 

be able to discern the actual targets from those entities that at first glance appear to be a 

target, but are actually part of the civilian infrastructure being used illegally.  It is this 

point that makes the cooperative control aspect of UAV target searching critical to ensure 

that a UAV has found a legitimate military target before it attempts to destroy it.  As the 

U.S. continues to fight in urban environments around the world, the need for this 

technology will keep growing and the tolerance for error on the battlefield and in the 

political arena will keep shrinking.  

1.1.2 Full Scale Autonomous UAV Experimental Work    
 

Even though this autonomous and cooperative technology is being heavily 

researched and funded by the US Department of Defense, the UK Ministry of Defence is 

also working to develop the same type of technology.  As recently as 30 October 2006, 

Qinetiq, a UK defence contractor, completed an in flight demonstration of the UAV 

Command and Control Interface (UAVCCI) by using a BAC 1-11 1960’s era jetliner to 

simulate a fighter pilot managing four UAVs as well as their own jet.  To add realism to 
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the test and prove the functionality of the UAVCCI, the pilot in control of the BAC 1-11 

sat in the back of jet where he controlled it as well as the UAVs.   

The UAVCCI system is designed to allow for semiautonomous flight of the UAVs so 

pilots can easily control their jet, without worrying about always giving commands to the 

UAVs.  When the UAVs do not get commands, they are programmed to fly straight and 

level, but the pilot has the ability to direct them through a moving map and push buttons.  

With these controls, the pilot can direct the UAVs to loiter, start a search, or attack.  This 

test showed that cooperative and autonomous control of UAVs can occur not only from a 

ground station, but also from the cockpit of a military jet closer to the fight.  The pilot 

would then be able to use the displays as well as the real time battlefield environment to 

give the UAVs specific commands (Marks, 2006).  As previously noted, the remote or 

autonomous control of military assets will help greatly in the Global War on Terrorism to 

keep US and allied service members farther from their nameless and uniformless enemies 

and their treacherous improvised explosive devices (IEDs).  According to Icasualties.org, 

a non military website that provides DoD verified information on Operation Iraqi 

Freedom casualties, 1183 of the 3085 U.S. deaths through the end of January 2007 

(roughly 38 percent) have been caused by IEDs (iCasualties.org, 2007).  Development of 

autonomous search vehicles will help mitigate the effects of this deadly tactic in the 

future.  In fact, the research in this thesis will help the Pentagon towards their goal of 

having one third of their military assets “robotic or remotely controllable by 2015 (Marks 

2006).”    

While the physical integration of hardware and software of sensors into an 

unmanned vehicle can be quite complex, the operational concept of the system is quite 
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straightforward.  The system can be thought to be analogous to a self checkout area at a 

grocery or retail store.  With the self checkout process one operator monitors multiple 

checkout stations and only intervenes if the customer at the station is having problems 

that they cannot solve themselves.  In the autonomous UAV search group concept one 

operator will have the capability to monitor multiple UAVs to ensure that the group is 

working towards its mission objectives, and only intervenes if there is a problem that one 

or more of the UAVs cannot fix on their own.   

1.1.3 Autonomous UAV Cost /Benefit Analysis  
 

Many benefits come from operating UAVs in the autonomous regime.  The      

simplest advantage comes from the ability to allocate less personnel to operate more 

UAVs.  When UAVs are flown manually by an operator, there is at least one human for 

each UAV and often several.  If one operator can monitor 3-4 UAVs, then more UAVs 

can be utilized with the same number of operators.  This operator can also perform this 

job from any ground station within communications range (radio, satellite, etc) of the 

UAV fleet they are controlling, thus keeping them off of the battlefield.  Other 

advantages include being able to perform coordinated searches over larger areas than a 

single UAV could search, and engaging multiple targets with multiple vehicles in the 

same search.   

Some challenges involved in fielding networked UAV systems include the 

development of adaptable operational procedures, as well as planning and deconfliction 

of assets.  As these technologies progress, UAVs will be able to make better allocation 

and targeting decisions on their own.  However, autonomous UAVs will always have the 
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chance to make poor decisions because they are taking data acquired through real time 

sensing and computing solutions based on human produced algorithms to make targeting 

decisions that could result in a bad target selection as well as damage to or outright loss 

of the air vehicle (Vachtsevanos, 2004).  While some of these algorithms will possibly 

involve multiple checks from other UAVs in the fleet before engaging targets, they will 

never be foolproof instructions to ensure a wrong target is never hit.  Because these 

algorithms operate independent of human control, they must continually be updated, 

refined, double checked, and monitored to keep up with the ever changing conditions on 

the battlefields of the world.     

1.2 Previous Applicable Research 
 

The current state of the art in Unmanned Aerial Vehicle (UAV) targeting research 

at the Air Force Institute of Technology (AFIT) has implemented analytical concepts into 

robust multi-warhead and multi-vehicle Matlab/Simulink simulations.  Since many AFIT 

theses as well as a multiple dissertations have explored the autonomous UAV targeting 

concepts and simulations, the next logical step in the process is to develop hardware to 

prove it is possible for autonomous target recognition (ATR) systems to properly detect 

and identify objects.  This experimental validation of theoretical concepts will help the 

Air Force move towards implementing robust targeting algorithms into operational 

autonomous UAV fleets in the future.   

Some of the topics of the wide area search research involve optimal path 

planning, applying probability theory to the UAV fleet, conducting simulations using the 

Multi-UAV simulation test bed (Rasmussen, Mitchell, Chandler, 2005), automatic target 
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recognition (ATR), performance under limited communication, non-linear control of 

UAVs in close coupled formation, and most recently dynamic scaling of UAVs.  Each 

topic contributes greatly to cooperative control of autonomous UAVs, but only ATR and 

dynamic scaling will be expounded in the present research.  ATR theory will be used in 

the development of a simple target identification algorithm that a ground based search 

vehicle platform will use to identify targets and dynamic scaling will be used to ensure 

that the vehicle has the proper dynamics to reasonably represent a flyable experimental 

UAV system.  

1.2.1 Autonomous Target Recognition  
 

To better understand the logic behind cooperative UAV targeting algorithms, the 

concept of a confusion matrix must first be introduced.  It has been used in the work of 

Dr. David Jacques and Dr. Meir Pachter (2003) to provide conditional probabilities for 

each possible outcome when a search vehicle sweeps a given area and encounters an 

object it determines is not part of the background.   For simplicity, the concept will be 

explained below using a single target scenario.   

For a UAV to detect a single type of target during a wide area search, two events 

must occur.  The first event is the proper characterization of the target.  This can occur, 

with operator involvement, during the search or this information can be preloaded into 

the UAV’s ATR algorithm.  Targets are characterized by size, shape, color, another 

unique signature (e.g. IR), location in relation to other objects, or a combination of these 

attributes depending on the type of onboard sensor(s) and their capabilities.  Like with 

any search, the sensor must know what it is searching for or it will not know when it has 



7 

found a target.  Once the target is properly characterized, the second event is the actual 

detection of the target by the UAV’s ATR system.  The ATR system includes both the 

sensor(s) used to obtain signature information about objects and the ATR algorithms used 

to detect and classify/identify objects based on the sensor data.  Since no ATR system is 

perfect there are times when it might misidentify objects it encounters.  Table 1 shows the 

four possible outcomes of this type of search when an object is encountered.  

Table 1. Simple Binary Confusion Matrix 
 

 Object Encountered 
Object 

Declared True False 

True PTR 1-PFTR 
False 1-PTR PFTR 

 
When the ATR algorithm processes the sensor data at a given instant it will either 

classify the object as a target or a false target (perhaps a decoy or just background noise).  

Note that in the simple binary case, a false target classification occurs when either an 

object in the sensor footprint is not classified as a target or if there is no object in the 

sensor footprint.  If the object is a target, the percent of the time the sensor properly 

identifies it as such is the probability of true target report, PTR in the confusion matrix.  If 

that object is a target, the percent of time the sensor incorrectly dismisses it as a false 

target is 1- PTR.  Alternatively, if the object is a false target object or just clutter, the 

percent of the time it is properly identified as such is the probability of false target report, 

PFTR.  The final piece of the confusion matrix is 1- PFTR, the percent of the time the sensor 

encounters an object that is not a target, but identifies it as a target.   

To account for all possible outcomes given a target or false target encounter, the 

conditional probabilities of each column will add up to one because the ATR algorithm is 
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forced to state that its field of view either contains a target or does not contain a target.  

Expanding this concept to the multiple target case is as straightforward as expanding the 

dimensions of the matrix to make it an m x n rectangle where m-1 is equal to the number 

of possible specific target declarations with the final declaration being an “Other” or 

“None of the Above” and n is equal to the number of possible object types that can be 

encountered in the search area.  

Table 2. Multiple Target Confusion Matrix 

Object Declared Object 1 Object 2 Object 3 Object n

Target Class 1 PTR1|1 PTR1|2 PTR1|3 PTR1|n

Target Class 2 PTR2|1 PTR2|2 PTR2|3 PTR2|n

Target Class m-1 PTRm-1|1 PTRm-1|2 PTRm-1|3 PTRm-1|n

Other 1-ΣPTRj|1 1-ΣPTRj|2 1-ΣPTRj|3 1-ΣPTRj|n

Object Encountered

 

In the binary confusion matrix, the ideal case would be to have an identity matrix 

where PTR = 1 and PFTR = 1.  With these values, the system would always attack targets 

and never attack false targets.  Since the real world does not allow for this, the best case 

is to strike a balance between the competing objectives of PTR and PFTR.   

To better understand how the probability of a false target being declared a true 

target, 1- PFTR, relates to system performance, the false target encounter rate, ηf must also 

be considered.  This parameter is multiplied by 1-PFTR to determine the false target attack 

rate or FTAR.  The two metrics, FTAR and PTR were used by Gillen (2001) in a previous 

AFIT thesis as a measure of success for ATR search algorithms.  From a logical 

standpoint, having a high FTAR not only shows that the sensor is not properly 
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characterized, but in reality it equates to civilian or other nonmilitary objects being 

accidentally targeted, or wasted munitions if the targeted object is of no military value.  

Having a low PTR is just as dangerous because it could result in missed targets that will 

cause later harm because they were not destroyed.  Making the tradeoff between the two 

so that PTR is high enough to be mission effective and FTAR is low enough to be 

acceptable becomes a non trivial problem that is dependent on both the quality of the 

sensor and also the ATR algorithm written to make the crucial targeting decisions  

A tool used by Kish (2005) to visualize the relationship between PTR and 1-PFTR is 

called the Receiver Operating Characteristic (ROC) curve.  This curve traditionally 

shows 1-PFTR on the x-axis and PTR on the y axis and is plotted for multiple values of c 

(ROC parameter).  The ROC parameter defines a performance envelope for the 

sensor/ATR, with a higher c value providing better performance.    

 

Figure 1. Receiver Operating Characteristic Curve 
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As seen in Figure 1, when PTR gets close to unity, 1-PFTR also gets close to unity.  

This represents the situation where the ATR threshold is kept very low so as to not miss 

targets, but it will also be very likely to falsely classify other objects or the background as 

targets.  The ideal ROC curve would spike from 0 to 1 on the y –axis at x=0.  Notice that 

as c increases, the ROC curve comes closer to the ideal ROC curve.  Equation 1, adapted 

from (Moses, Shapiro, Littenberg, 1993), empirically relates PTR, 1-PFTR, and c to 

generate the curves in Figure 1.  

  
cPc

PP
TR

TR
FTR +−

=−
)1(

1                                                   (1) 

Notice that the value of c drives the relationship between PTR and PFTR in Equation 1.  To 

increase the value of c, parameters such as area search rate, pixel density, sensor 

algorithms, and the characteristic size of the targets can be altered.  The actual ROC 

curve for an ATR based system must be determined experimentally, so Equation 1 

merely represents an approximation to an actual ROC curve.  

In the past, most of the target detection in simulations was completed through a 

confusion matrix.  If the UAV came across what appeared as a target, its simulated sensor 

would run through a confusion matrix to determine if the detection was a true target 

given a known distribution of targets.  While this technique provided useful simulation 

data, it treated the sensor as just a set of probabilities instead of an actual piece of 

hardware.  Further, it did not allow for experimentation on hardware platforms.    

Other keys to success in the cooperative control of autonomous UAV fleets 

include communication, decision control/task allocation, and management of uncertainty.  

Developing technology for UAVs to communicate, allocate the search and destroy parts 
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of the mission, and know when a target is legitimate or not work is critical to making the 

battlefields of the future not only safer for our troops, but also safer for the innocent 

civilians caught in the crossfire.  While not a focus of this research, future work must 

address the use of multiple experimental search vehicles to demonstrate the use of 

cooperative algorithms to identify targets.  

In this research, the ATR system including the actual sensor and ATR algorithm 

will be part of a surrogate vehicle that will serve as a test bed to conduct wide area search 

missions.  The ATR system will be characterized by experimentally determining both PTR 

and 1-PFTR for various conditions at a given threshold.  Target size, shape, and color will 

all factor into this characterization for different operating conditions.  Once PTR and       

1-PFTR are known for a given threshold and operating condition, they can be artificially 

increased and decreased by simply changing the threshold.  Doing this for a variety of 

thresholds will produce a ROC curve for the given operating condition.    

1.2.2 Sensor Footprint Characteristics 
 

As the vehicle conducts its wide area search, its sensor will have a footprint size 

that depends on the sensor specifications, mounting geometry, vehicle position, and 

altitude.  For this research, a similar geometry to that of Abeygoonewardene (2006) will 

be used.  The sensor will be mounted on the vehicle such that it has a trapezoidal 

footprint with length, z, and with front width, wf, and rear width, wb.  The elevation view 

in Figure 2 shows the footprint length in relation to the position of the vehicle in the 

vertical dimension as well as the other angles and dimensions in the vertical plane.    
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Figure 2. Elevation View of Ground Vehicle During Search 

 
In the elevation view, the vertical field of view (VFOV), sensor height above the search 

area h, and the bore angle φ drive the depression angle γ, footprint length z, dead range d, 

slant range s, and slant angle α.  Of these parameters, VFOV can be experimentally 

determined or obtained from manual specifications, and should stay relatively constant 

for a single sensor, and the depression angle, as well as the slant angle can both be 

determined once a bore angle is set.  See below for the development of all of the 

necessary equations to solve for the vertical geometry of the sensor footprint.   
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The azimuthal footprint shown in Figure 3 illustrates the width of the front and 

rear footprints with respect to dead range and footprint length, both determined above.   

 

Figure 3. Azimuthal View of Sensor Geometry 

Figure 4 shows the frontal view of the search vehicle’s geometry.  To actually 

determine the sensor footprint width, the two needed additional parameters are the sensor 

swath angle, θ, and the sensor front slant, sf, and back slant, sb, distances.  Because the 

V 
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swath angle is a property of the sensor, it must be experimentally determined or obtained 

from specifications in a similar fashion to the VFOV angle.   

 
Figure 4. Frontal View of Sensor Geometry 

Notice that from the geometry of the footprint in the plane, it is assumed that half 

of the swath angle encompasses half of the footprint width.  Once the swath angle is 

known, trigonometry can be used to determine the sensor footprint back and front widths 

as seen below.  

1 12 tan ( )
2b bw s θ−=                  (8)

1 12 tan ( )
2f fw s θ−=                 (9)

 

Lastly, area search rate is can be determined by taking the product of the rear footprint 

width and the velocity of vehicle normal to the footprint width.  The rear width is 

selected due to the trapezoidal shape of the footprint even though the front width is wider.  

ss  

ww  

θθ  
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Equation 10 will give a conservative area search rate value and will not account for any 

objects that are whole or partially located outside the rear width of the footprint.  

b
dA w V
dt

=                                                                   (10) 

 
 In addition to the size and shape of the sensor footprint, another consideration in 

targeting applications is frame overlap OL for maximum coverage of the search area.  By 

overlapping frames, the target can be guaranteed to be contained wholly within a single 

frame if its largest dimension is smaller than the overlap.  Cameras with slower 

processing time might not be able to overlap, but if they could capture frames fast enough 

to ensure that each frame abuts the next, the target would still be wholly captured, but in 

two adjacent frames.  Frame overlap is much better than abutment, but sometimes sensor 

processing speed and minimum vehicle speed make it infeasible.  When feasible, overlap 

can be calculated using frame length, FL, and frame separation, FS, as seen below. 

     sL FzO −=                                                                    (11) 
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Figure 5. Frame Overlap for Straight Line Search 

1.2.3 Dynamic Scaling  
 

In the development of UAV systems, simulations are normally conducted using 

dynamic models from the actual vehicle being simulated.  These vehicles are often quite 

large and, due to both cost and safety, can be prohibitive to test in the early stages of 

development of systems.  However, there are a number of guidance and control systems 

that could be tested earlier in development if the vehicle was ready.  To solve this 

problem, a surrogate vehicle can be used during the initial real world testing as long as it 

is dynamically similar to the actual system.  These surrogate vehicles can be small less 

expensive UAVs or unmanned ground vehicles that match the characteristics of a larger 

or more expensive UAV, i.e. are dynamically similar.   

The proper dynamic scaling of an experiment should produce predictable results 

and the vehicle should have multiple configuration capability to closely match its larger 
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counterpart.  If it can meet these criteria, it should give an accurate representation of the 

performance of the full size air vehicle it is representing. Once the initial surrogate 

vehicle is configured properly, future researchers can use this test bed to complete 

experiments without spending the majority of the time on the critical yet laborious task of 

designing & building the system.   

In this particular research, there are three possible ways to conduct a real world 

experiment to validate the single UAV ATR computer simulation.  The first and most 

expensive is to fly the actual UAVs on a test range with actual targets.  The next choice 

would be to fly scale models UAVs on a test range with the targets, using dynamic 

scaling to ensure the integrity of the experiment.  This choice is cheaper and safer than 

using full size UAVs.  However, since the technology is still maturing, this is also risky 

due to the chance of losing a UAV with thousands of dollars of equipment integrated into 

its fuselage.  The third and safest choice is to use dynamically scaled ground vehicles to 

represent the UAVs in a two dimensional space.  The lack of an altitude dimension will 

be considered the same as assuming that the altitude is constant.  With the current state of 

the technology, it makes sense to start with the scaled ground vehicles and work up to the 

full size UAVs when it is safe and cost effective.  

In September 2006, Jeevani Abeygoonewardene showed how smaller and less 

complex surrogate vehicles can be used to conduct experiments that will predict the 

performance of their nominal counterparts (2006).  

These dynamic scaling techniques, based heavily upon the Buckingham Pi theorem 

(1914), provide the mathematical proof that matching certain parameters between two 
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vehicles is enough to consider the surrogate as an accurate representation of the actual 

full scale vehicle.    

 The Buckingham Pi theorem stipulates that the solution to any differential 

equation, regardless of its order or nonlinearity, can be made invariant with respect to 

dimensional scaling as long as appropriate ratios of parameters are maintained.   If these 

ratios of the independent variables can be maintained, two systems of different size can 

be said to be “dynamically similar.”  Even though it sounds like a simple process, the 

independent variable must first be identified so that non-dimensional pi groups can be 

developed.   

 The physically meaningful equation below, 

0),...,( 21 =nqqqf  

shows each q as one of the n physically meaningful independent variables expressed in 

terms of k independent physical units.  The above equation can be rewritten as shown 

below,  

0),,( 21 =ΠΠΠ nF  

where the Πi are dimensionless parameters built from qi in the form of 

nm
n

mm
i qqq ...21

21=Π  

where the exponents mi are rational numbers.  The number of Π equations is calculated 

from the equation below. 

p= n − k 
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Abeygoonewardene (2006) determined that the following 9 variables in Table 3 

accurately represent both the vehicle and sensor dynamics using the wide area search 

sensor geometry developed earlier in this thesis. 

Table 3. Variables Representing Vehicle and Sensor Dynamics 

d Sensor Dead Band 

V Vehicle Velocity 

g Vehicle Required Acceleration 

w Sensor Footprint Width 

c
∧

 Simplified ROC Curve Parameter 

ρt Pixel Density 

z Sensor Footprint Length 

Ltarg Target Characteristic Length 

OL Frame Overlap 

. 

Since there are 9 physically meaningful independent variables 

n = 9 

The two physically meaningful independent dimensions associated with these variables 

are length, L and time, T.  Therefore, 

k = 2 

Applying Buckingham’s Theorem, the number for dimensionless equations (p) is, 

p = n-k = 9 – 2 = 7 
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Since d and V cannot form a dimensionless group by themselves, they are selected as the 

set to use to non-dimensionalize the rest of the parameters.  These variables have the 

following dimensions: 

d => L 

V => LT-1 

Substituting d into the equation for V and then solving for T, 

L= d 

T=dV-1 

Now each of the 9 variables can be non-dimensionalized by multiplying/dividing it by 

either d, V, or some combination of the two.  Table 4 below shows the 9 variables, their 

pi group, and which variable(s) they are multiplied/divided by to form the pi group.    

Table 4. Dynamic Scaling Pi Groups  

Variable (units) Pi Group #/Ratio  

z (L) Π1 = z/d 
w (L) Π2 = w/d 

g (L/T2) Π3 = g(n2-1)1/2d/V2 
∧

c  (TL-1) Π4 = 
∧

c V 
Tρ , (L-2) Π5 = Tρ d2 

Ltarg (L) Π6 = Ltarg /d 
OL (L) Π7 = OL /d 

 

 With defined pi groups, it is now possible to attempt to match the dynamics of a 

surrogate vehicle (ground or air) with those of a full scale UAV (nominal).  If a surrogate 

vehicle is chosen such that its pi groups match or closely match the pi groups of the 

nominal vehicle and the two vehicles share the same governing differential equations, 

then the vehicles have dynamic similitude.  
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1.3 Research Statement 

The primary goal of this research is to design, build, and test a wireless, radio 

controlled surrogate autonomous search vehicle to physically demonstrate single vehicle 

wide area search techniques.  This surrogate search vehicle will demonstrate the ability to 

identify objects as either targets or false targets through the use of ATR algorithms 

including the development of confusion matrices and ROC curves for the static case and 

for a given velocity.  A secondary goal of the research is to demonstrate that the surrogate 

vehicle can be dynamically scaled to the nominal Sig Rascal 110 RC aircraft performing 

at normal operating conditions (100 feet AGL, 60-90 ft/sec).  The airspeed window is the 

same as used by Capt Nidal Jodeh, USAF, in his research (2006) presented in March 

2006.  Using the same airspeed window will give future researchers performance data to 

use when testing the algorithms on the nominal vehicle.   

Two separate theoretical calculations will be developed to predetermine search 

parameters for the system.  The first is the calculation of the maximum number of pixels 

the camera will return when it has a colored target object aligned with the middle of the 

bottom of its field of view.  This parameter will feed into the ATR threshold calculation 

as well as validate the geometry of the experimental setup.  The second calculation will 

determine a steering correction angle to give the surrogate vehicle the capability to 

navigate directly over the top of objects it classifies as targets (i.e. engage).  Although 

this angle will not be used during the research presented here, it can be used in future 

experiments that use algorithms to guide the search vehicle through a search area.    
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1.4 Summary 

Autonomous UAV research is coming more into the spotlight as the United States 

continues to fight in asymmetric conflicts around the world.  The development of this 

technology will help keep US forces further away from the dangers on battlefields around 

the world and more aware of the environment in which they are fighting.  To more 

quickly field these unmanned systems, a surrogate vehicle will be developed to 

demonstrate the guidance and control systems on a smaller scale resulting in quicker and 

safer testing of the system. 

Autonomous target recognition and dynamic scaling will be used to design the 

surrogate vehicle.  Implementing these two concepts into the surrogate will allow its 

sensor to closely match the performance of an operational system and allow the guidance 

and control systems to be developed and tested to meet the warfighter’s needs prior to the 

vehicle’s first flight.  To design and build this surrogate vehicle system, its component 

hardware needs to be identified.  Chapter 2 will describe each of the components used in 

the surrogate as well as the hardware and software integration necessary to make the 

system functional.  Chapter 3 will discuss the development of the ATR algorithm used in 

this research, including the initial ATR threshold and the actual wide area search 

procedure.  Chapter 4 will describe the results of static and dynamic search experiments 

to determine experimental ROC curves for the surrogate, as well as a dynamic scaling 

analysis using theory developed in Chapter 1.  Finally, Chapter 5 will offer a summary of 

the research presented in this thesis and also recommendations for future work to further 

develop the wide area search surrogate vehicle system.  
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2. Search Vehicle System Architecture 

The hardware for this ground based autonomous search and destroy surrogate 

include the Tamiya RC Mammoth Dump Truck (Tamiya, 2007), Kestrel Autopilot 

(Procerus, 2007), Aerocomm 4790-1000M OEM wireless transceiver Software 

Development Kit (Aerocomm, 2007), and the CMUcam2 vision sensor camera 

(CMUcam2, 2007).  All products, with the exception of the truck, which is no longer in 

production, and their accompanying software/hardware are available commercially 

through their respective manufacturer’s websites on the World Wide Web.  Each piece of 

hardware will be discussed in more detail in this section, including the features that make 

them all good choices to fulfill the necessary functions for this research.     

2.1 Tamiya RC Mammoth Dump Truck 
 
 The Tamiya RC Mammoth Dump Truck (2007) is a radio controlled 1/20 scale 

dump truck with shaft driven all time 4 wheel drive, sturdy suspension, and a 540 motor.  

This motor is powered by a single 6 cell 7.2 V nickel-metal hydride (Ni-MH) battery 

pack.  This robust platform is roughly 20.6 inches long with an 11 inch wheelbase and an 

11.6 inch front and rear track.  With a 1.6 inch minimum clearance, the vehicle stays very 

low to the ground so it must be used on even terrain.  

Figure 6 shows a side view of the truck as well as the large 6.14” x 2.36” rubber 

tires used to help move the 12.2 pound vehicle.  According to the manufacturer’s website 

it is capable of speed from a slow crawl to cruising speed, which we estimate to be at 

least 5 mph.  With this span of controlled speeds, this vehicle is a good candidate for this 
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ground based experiment because it can operate in the slower range of speeds needed to 

scale to the 30-40 knot cruise speed of a Sig Rascal 110 (Jodeh, 2006).  

  
Figure 6. Tamiya 1/20 Scale RC Dump Truck  

2.2 Kestrel Autopilot System v 2.2 
 

The guidance for the search system comes from the Kestrel autopilot system, 

manufactured by Procerus Technologies in Vineyard, Utah (Procerus 2007).  This 

autopilot provides the vehicle with its autonomous guidance and control ability with its 

GPS (Global Positioning System) and INS (inertial navigation system).  The system is 

comprised of the actual onboard autopilot system and the ground station.   

One of the main reasons the Kestrel system was selected for the system is the 

small size and weight of its onboard autopilot box.  Since this system is normally 

integrated into UAV systems, where size and weight are restrictions are more stringent, 

the autopilot box was designed to easily fit into the palm of a hand.  It weighs only 16.65 

grams and is 2.375” L x 1.5” W x .875” H (Figure 7).  An autopilot of this size can be 

20.6” 

 11.1” 

11.8” 
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easily integrated into any one of multiple free cavities in the frame most radio controlled 

trucks.  

 

Figure 7. Kestrel Onboard Autopilot Box Input/Output Port Description, 
(With Permission © Copyright 2006 - 2007. Procerus Technologies.  

All Rights Reserved.) 
 

As mentioned above, the Kestrel is normally designed to provide navigation and 

real time telemetry to UAVs, but it should also work for this experiment since the ground 

vehicles can be related to air vehicles flying at a constant altitude.  The onboard portion 

of the  autopilot system (Figure 8) includes not only the autopilot box (differential and 

absolute air pressure sensors, 3-axis rate gyros, accelerometers), but also a GPS receiver 

and a dipole antenna to wirelessly transmit telemetry to a 4.5” L x 3.675” W x 2.25” H  

Commbox transceiver.   
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Figure 8. Kestrel Autopilot with GPS receiver, dipole antenna, and pitot tube, 
(With Permission © Copyright 2006 - 2007. Procerus Technologies.  

All Rights Reserved) 
 

The ground based portion of the Kestrel Autopilot System consists of a Commbox 

receiver, RC transmitter, and the Virtual Cockpit software loaded onto a laptop computer.  

(Figure 9).  This ground station setup allows for all telemetry data to be relayed from the 

autopilot onboard the vehicle to the laptop via the Commbox through a R232 9-pin serial 

cable.  If manual control of the vehicle is needed, an RC transmitter can be connected to 

the Commbox and when configured properly the vehicle will respond to transmitter 

commands instead of autopilot commands from the ground station.  

 

 
Figure 9. Kestrel Autopilot Ground Station Setup, 

(With Permission © Copyright 2006 - 2007. Procerus Technologies.   
All Rights Reserved) 
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The final portion of the Kestrel Autopilot ground station is the Virtual Cockpit 

software that acts as a graphical user interface (GUI) shown in Figure 10.  The GUI can 

be used to set vehicle parameters and send speed and navigation commands to the vehicle 

as well as receive telemetry data from the vehicle.  A short list of telemetry data available 

includes vehicle position, speed, acceleration, altitude, and heading information.  Because 

the vehicle has both a GPS receiver and an INS, some of the telemetry data is received 

from two different sources.   

 

 
Figure 10. Kestrel Autopilot System Virtual Cockpit Screenshot 

(© Copyright 2006 - 2007. Procerus Technologies.  All Rights Reserved) 

While it seems like a busy interface, a large majority of the screen is a map to show the 

location of the vehicle in two dimensional space.  Because the GUI is set up for UAV 
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flight, several of the options will not be used in this ground based research.  Gains and 

other parameters for both elevator/pitch and rudder/yaw are completely ignored due to 

the way the autopilot will be integrated into the steering mechanism of the truck.  Also, 

because the vehicle(s) will be driven using the RC mode or the autonomous waypoint 

navigation mode for the majority of the time, the other modes including, takeoff, landing, 

loiter, home, rally, manual, and altitude, will be used rarely if at all.   

2.3 CMUCam2 Camera and Processor  
 

The Carnegie Mellon University Camera 2 (CMUcam2, 2007) was chosen as the 

sensor to complete the tasks required in this experiment. This camera is the second in the 

series of cameras developed by Carnegie Mellon University, following their CMUcam 

development in 2001.  It is commercially available through Seattle Robotics and 

Acroname, Inc in the United States.   

The CMUcam2 system (Figure 11) is made up of an OV6620 Omnivision CMOS 

(complementary metal-oxide semiconductor) camera interfaced with a Ubicom SX52 

microcontroller.  Some of its several features useful to targeting applications include 

onboard image processing, video output, color tracking, and motion detection.   

 

Figure 11. CMUcam2 Vision Sensor 
Courtesy of Acroname Inc, www.acroname.com 
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The ability to process images in real time (or as close to real time as possible) 

gives the targeting vehicle the ability to act on this information almost instantly (multiple 

images per second).  Image processing speed is critically important in this research 

because the system will have less time to make a decision on a target before it leaves the 

field of view due to the smaller scale of this research.  If the camera can process multiple 

images per second, the targeting algorithm can make essentially real time target decisions 

while the potential target is still in the field of view of the camera.  It also opens up the 

opportunity for other vehicles to be called in to make a determination if necessary before 

the object is classified as a target or as a false target.  This capability should be able to 

greatly reduce the FTAR.  

Other features of the CMUcam2 that are useful to search and targeting 

applications include video output, color tracking, and motion detection. The video output 

feature of the CMUcam2 allows for the operator to view the search area as the surrogate  

is actively pursuing targets.  While this second pair of eyes would not be in keeping with 

the concept of a truly autonomous search, it is extremely helpful during experimental 

validation of ATR algorithms.  

More tools embedded into the CMUcam2 include color tracking and motion 

detection.  Both can be useful if target size, shape, or color information is previously 

known and can be “taught” to the ATR system.  If the target does not need to be 

eliminated, but instead followed to help produce bigger targets, tracking it using color 

and motion detection will ensure that it is kept in the field of view.  This type of 
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surveillance can be helpful in picking up travel patterns and it gives time to identify the 

object as a high or low priority target.   

2.3.1 CMUCam2 Field of View Experiment 
 

Similar to the process used in by Mike (Mike, 2006) in his thesis, the field of view 

for the CMUcam2 was determined by capturing an image of a grid with the camera (bore 

angle aligned normal to the grid) at a known distance from the grid.  Knowing the 

horizontal and vertical dimensions captured by the image, and the distance of the camera 

from the image, a simple arctangent can be used to determine both the vertical field of 

view, VFOV, and the swath angle, θ.  Table 5 shows the results obtained from this 

experiment with the CMUcam2 used for this research as well as those calculated in 

(Mike, 2007:7).     

Table 5. CMUcam2 Field of View Angles 

 Vertical FOV Horizontal FOV 
Rufa - MS Thesis 45.13° 30.79° 
Mike - BS Thesis 44.91° 29.76° 

 
The results from this experiment correlate closely to the experiment conducted by Mike 

to determine the CMUcam2 horizontal and vertical field of view.  Since both fields of 

view were off by 1 degree or less, they are sufficient to use when calculating specific 

sensor geometry information in Chapter 4.   

2.4 Aerocomm 4790-1000M OEM Wireless Transceiver 
 

To make the system truly wireless, a wireless serial connection between the 

camera and the ground station is necessary.  While the Kestrel Autopilot has extra data 

ports to send wireless signals, it was decided that giving the camera its own dedicated 
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transceiver set would provide the best results since each set of wireless transceivers could 

operate independently.  The Aerocomm 4790-1000M 900 MHz Transceiver (Aerocomm, 

2007) was selected to provide wireless transmissions between the camera and ground 

station due to its ease of use and range.  According to the Aerocomm website, this 

transceiver has a range of up to 20 miles with a high gain antenna.  Although, this 

research will not require that type of range, future applications of these wireless serial 

radios might require a larger range.   

The kit ships from the factory with two transceivers mounted to an adapter board 

as shown in Figure 12 below.  These adapter boards give the designer the capability to 

integrate these wireless serial radios with USB, RS-232, or RS-485 type peripheral 

equipment and ground stations.   

 

 

Figure 12. Aerocomm 4790-1000M Wireless Transceiver SDK 
(Reproduced with permission of Aerocomm, Inc) 

In most applications, the two boards work together on one serial port to provide a 

two way wireless data flow from one peripheral device, but the introduction of a third 

board gives the capability for another peripheral device to be added to the system on its 
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own serial port.  The board wired to the ground station can be configured to receive 

signals from both peripheral devices through two separate serial ports.     

2.5  Ground Vehicle System Vehicle Electronics Integration  
 

The integration of the CMUcam 2 with its wireless serial connection and Kestrel 

Autopilot System into the Tamiya radio controlled truck was completed in two parallel 

phases.  The first phase was the physical integration of the camera (with transceiver) and 

autopilot into the sensor deck of the truck, while the second phase was the writing and 

integration of the ATR software to run the camera, receive and process its data, and make 

a targeting decision.   

2.5.1 System Hardware Integration – Kestrel Autopilot System & CMUcam2 
Vision Sensor System 
 
  Due to volume constraints within the dump truck, the autopilot box, dipole 

antenna, GPS receiver, camera, and wireless serial transceiver were installed on the 

sensor deck seen in Figure 13.  

 

Figure 13. Ground Vehicle Sensor Deck with all Components Installed 
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For the truck to be driven autonomously, its power and steering mechanisms need 

to be connected directly to the onboard autopilot box because this device takes over the 

role of the receiver that normally sends steering and throttle commands to the servos.  

The truck steering cable is connected to the aileron channel on the autopilot (Channel 1), 

while the truck’s throttle is connected to the throttle channel on the autopilot (Channel 4).  

The final necessary connection is from the autopilot to a pair of 3 cell lithium polymer 

(LiPo) batteries that power both the autopilot and the other sensor deck devices.  Figure 

14 shows all of the necessary connections to the autopilot.   

 

Figure 14. Kestrel Autopilot Box with Steering and Throttle Connections to Truck 

The autopilot’s GPS receiver is secured with velcro to the rear end of the sensor 

deck with the antenna facing skyward so that when the truck is upright it will have a 

direct line of site to its satellites.  The dipole antenna is secured to an antenna mast that is 

mounted through a hole in the rear part of the sensor deck.   

The other system integrated into the truck frame is the CMUcam2 and its wireless 

serial transceiver.  Both devices are powered by the LiPo batteries, but only the camera 

has its own power switch.  As soon as the transceiver is connected to the battery, it 

becomes energized.  Due to space constraints under the body, both the camera and 

transceiver are placed on the sensor deck as shown in Figure 13.  

Autopilot Connection to GPS Receiver 

Autopilot Connection to Truck Steering Servo

Autopilot Connection to Truck Throttle Control
Autopilot Battery Connection 

Autopilot Pitot Tube 
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2.5.2 System Software Integration – Kestrel Autopilot System & CMUcam2 
Vision Sensor System 
 

As with any hardware installation, the companion software must be properly 

configured to ensure each of the components work as expected.  To make the complete 

system work properly, the Kestrel Autopilot Software and CMUcam2 software both 

needed to be configured to communicate with the ground station and also with each 

other.  For ease of use, Matlab was selected as the software programming tool for the 

CMUcam2, while the Kestrel autopilot used Procerus’ own Virtual Cockpit 2.2 software 

(Procerus, 2007).   

The CMUcam2 software integration consists of a Matlab routine designed to 

communicate directly with the ground station passing preprocessed information from the 

camera.  This preprocessed data comes through as packets that must be fully captured to 

use the information for targeting purposes.  These packets come through as tracking data, 

RGB histogram data, raw image data, or mean frame data.  With four different types of 

data packets, there are many different ways to use the frame data for processing.  Two 

processes are shown in the following paragraphs.     

The first processing option is to simply capture the raw pixel data with full frames 

and use the red, green, and blue pixel data in the ATR algorithm to determine whether the 

frames included the target or not.  Since the camera captures the frames in raw byte 

format, a Matlab program is needed to decode this binary data and discard certain non 

pixel information passed with each frame.  This non pixel information includes frame 

synchronization bytes, frame size, and column synchronization bits.  The process to 

capture a frame and get its pixel information into usable format for both analysis and 
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viewing is shown below.  Upon completion of this process, the image matrix can be fed 

into an ATR algorithm for a targeting decision.  

CMUcam2 Frame Capture Process 

1. Open camera’s serial port 
2. Send the “SF” command to the camera to capture a frame 
3. Send a command to the camera to read raw frame data to Matlab 
4. Close the camera’s serial port 
5. Remove non pixel information from frame capture data stream (147 bytes for 

low resolution capture) 
6. Reformat pixel information into format compatible with Matlab’s image 

command (87 rows x 143 columns x 3 colors).  If only one color is used, the 
matrix will be 87 x 143 x 1.  

 
The second processing option is to predetermine the color of the targets and then 

set the camera to find that specific color within each frame.  The camera accomplishes 

this task by returning a T packet (CMUcam2, 2007) with data shown in Table 6. 

Table 6. Tracking Packet Description for CMUcam2 

T denotes tracking packet 
mx x-centroid of tracked blob (pixel #) 
my y-centroid of tracked blob  (pixel #) 
x1 x-upper left hand of blob  (pixel #) 
y1 y-upper left hand of blob  (pixel #) 
x2 x-lower right hand of blob  (pixel #) 
y2 y-lower right hand of blob  (pixel #) 

pixels tracked pixels in FOV (capped at 255) 
confidence confidence of tracked pixels (capped at 255) 

 

This whole process occurs at 15 frames per second when the camera is connected to the 

ground station (e.g. laptop) via a serial cable.  When the camera and laptop are connected 

via a wireless serial connection through the transceivers, the frame rate is reduced to 5-6 

frames per second, but is still adequate for tracking stationary targets.  This process will 

enable the vehicle to move faster during the search and scale better with a Sig Rascal 
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110, but it cannot feed actual images without a secondary video camera mounted 

onboard.  However, the speed of the data coming into the ground station made this option 

more compatible with the type of data this research is looking to gain.  The process to 

capture tracking data is shown below. 

CMUcam 2 Target Tracking Process 
 

1. Open camera’s serial port 
2. Send the “TC [Rmin Rmax Gmin Gmax Bmin Bmax]” command to the 

camera with RGB min and max values 
3. Send “fscanf” command to the camera to read the “T” packet information into 

Matlab 
4. Determine if a complete packet was received. If a packet is missing 

information, the algorithm will insert a place holder into its place.  
5. Plot the location of the tracked color using the “mx” and “my” values to get 

an idea of where the target is in the camera’s field of view.  
6. Use the location of the tracked color to steer the vehicle towards that point by 

determining the position of the target relative to the nose of the vehicle.  
7. Close the camera’s serial port 
 
When the search vehicle is set to just search the area and not act on any target 

information it receives, it is possible for the two programs to run independent of each 

another.  In this case, only steps 1-5 in the tracking process are used.  However, if the 

vehicle needs to change waypoints based on its search results, the two different interfaces 

will need to work together to share information to update waypoints in the Virtual 

Cockpit, thus using all seven steps in the tracking process. 

2.6 Summary 

Integrating an RC truck with a camera, wireless transceiver, and autopilot yields a 

surrogate system that can be used to complete a wide area search of an area.  While the 

hardware integration was fairly straightforward, determining the type of frame data 

needed from the camera made the software integration more complex.  An author 
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modified script (von Kraus, 2007) utilized Matlab’s  prebuilt serial port communication 

commands to enable to the camera to send frame data wirelessly to the ground station at 

roughly 6 frames per second.  This script can be found in Appendix B.1.   

With the surrogate vehicle search system built, the next step in completing the 

experiment is to determine the process the system will use to turn sensor frame data into 

useful targeting information (i.e. develop the ATR algorithms).  The specific wide area 

search algorithm used to make targeting decisions for the experiments in this research 

will be discussed in Chapter 3.   
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3.  Wide Area Search Algorithm Development 

The process to build an algorithm that can predict whether an object in a sensor’s 

field of view is a target or not consists of several steps that will be discussed in the 

following pages of this chapter.  The steps to developing the algorithm include setting the 

ATR pixel threshold, searching the area, classifying an object upon encounter, and 

reporting the object as a target or false target.  Figure 15 shows the general flow of the 

ATR algorithm, however, the steps will be explained in further detail in the following 

sections.  

 

Figure 15. Flow of Wide Area Search ATR Algorithm  

A useful piece of information that can be implemented into the algorithm in the 

future is a vehicle steering correction angle.   Solving for this angle will give the vehicle 

the ability to engage the target it has identified by steering towards to target.   Because 

this research will not experimentally implement the steering correction angle, its 

derivation will be shown in Appendix C.   
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3.1 Search Vehicle Object Pixel Geometry 
 

If an object’s characteristic length is known, it is possible to calculate an estimate 

of the maximum number of pixels the camera can put on the object when it is aligned 

with the vertical centerline of the field of view and the rear horizontal edge of the field of 

view as shown in Figure 16.  Also, given an object’s upper left and lower right bounding 

coordinates from the sensor, it is also possible to calculate the angle, ψ, between the 

velocity vector of the surrogate vehicle and the centroid of the object.  This measurement 

can be used in future surrogate guidance and control work.  

 

Figure 16. Sensor Frame Ground Projection with Objects in Field of View 

3.1.1 Object Area Vertical Pixels Calculation 
 

The first step to calculating the maximum number of pixels the camera can put on 

the object is to determine its vertical angle, βobj.  This angle subtends the distance 

between the rear edge of the search footprint to the front edge of the object as seen in 

V

wwff

ψ
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Figure 17.    Knowing the object’s characteristic diameter, Dt, the equation below will 

give its vertical angle.   

     αβ −
+

= − )(tan 1

h
Dd t

obj                                                        (12) 

 

Once the vertical object angle is calculated, the number of vertical pixels on object can be 

determined by the following equation knowing that the camera has 143 vertical pixels.  

ObjVert obj
CameraVerticalPixelsP

VFOV
β=                                           (13) 

 

Figure 17. Estimated Vertical Object Angle, βobj 
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3.1.2 Object Area Horizontal Pixels Calculation 
 

Once the number of vertical object pixels is known, the next step is to determine 

the number of horizontal object pixels at the rear and front of the object to properly 

correlate this estimate with the data given using the sensor.  The angles used to determine 

the number of horizontal pixels are shown in Figure 18 and are calculated below.  

 )2
1

(tan2 1

obj

t

obj s

D
−=χ                                                                (14) 

 )2
1

(tan2 1

b

t

b s

D
−=χ                                                                 (15) 

Similar to the calculation of the number of vertical pixels on the object, the number of 

horizontal pixels on the object can be calculated by knowing the above two angles and 

horizontal pixels to swath angle ratio.  The two equations below represent the number of 

horizontal pixels at the rear edge of the object and the number of pixels at the leading 

edge of the object knowing that the camera has 87 total horizontal pixels. 

 
θ

χ lszontalPixeCameraHoriP objObjHoriz =                                (16) 

 
θ

χ lszontalPixeCameraHoriP bBHoriz =                                    (17) 

 

 



42 

 
Figure 18. Estimated Horizontal Object Angles, χb and χobj 

 Now that the number of vertical pixels and the number of horizontal pixels on 

object are known, the pixel area can be determined by correlating these values to the 

location of the object’s upper leftmost pixel and the lower rightmost pixel in the field as 

shown in Figure 19.  When the bore angle of the camera is not equal to 0 or 90 degrees, 

these two pixel locations will not be the same distance from the vertical centerline of the 

frame.  However, this is not a problem because the camera’s raw output provides both 

pixel location coordinates.  Therefore any theoretical area calculation using those values 

can also be verified experimentally.  The upper left and lower right pixel coordinate x and 

y equations, ULx, ULy, LRx, and LRy respectively, as well as the object pixel, AObjPix area 

equation are shown below.  

2
ObjHoriz

L

PlszontalPixeCameraHori
xU

−
=  

 

(18)

ObjVertL PicalPixelsCameraVertyU −=         (19)

2
BHoriz

R
PlszontalPixeCameraHori

xL
+

=     (20)

icalPixelsCameraVertyLR =                       (21)
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( )( )ObjPix R L R LA L x U x L y U y= − −                  (22)

   

 

Figure 19. Upper Left and Lower Right Object Pixels used to Calculate Object Area  

3.2 System Target Search Algorithm 
 
Once the target pixel threshold has been set, the surrogate vehicle can begin the 

wide area search.  This search consists of encountering, classifying, and reporting objects 

in the sensor’s field of view as it moves through the search area.  In chronological order, 

the system must first search for objects in its field of view that have a target characteristic 

(color will be used as the primary target characteristic in this research).  Upon 

encountering an object with the target characteristic, it must then classify it as either a 

target or false target.  The final step is to report its classification to the operator through 

some type of interface so that a disposition can be made depending on whether it has 

determined the object is a target or not.  

3.2.1 Searching 
 

For the surrogate to start searching, it must be given either an initial heading and 

speed (for straight line type search patterns) or waypoints for other types of search 

wwff  

θ 

UL 

LR 
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patterns.  With the current system, this can be accomplished by giving the vehicle a 

direction and velocity command using a radio transmitter or through setting waypoints 

using the Kestrel’s Virtual Cockpit software.  Once the vehicle starts moving, the sensor 

must be activated by starting the CMUcam2 Matlab script.  Upon completion of these 

two steps, the system is ready to start classifying objects as they are encountered.   

3.2.2 Classifying 
 

As the sensor captures frames in the wide area search, it will encounter objects in 

its field of view that have the target color characteristics.  When it detects these objects, it 

must classify them as targets or false targets.  If the ATR system is properly 

characterized, it would be expected that it will properly classify each object it encounters 

most of the time.  However, there should be instances where it improperly classifies 

targets as false targets or false targets as targets to account for the realism that should be 

expected on a battlefield.  

For the CMUcam2 to classify an object as either a target or a false target, it must 

first detect that object in it is field of view.  If it sees an object in the field of view with 

the target characteristic color, the system will calculate the object’s number of target 

colored pixels and compare that value to the pixel threshold determined by the maximum 

number of false target pixels.  A pixel count higher than the threshold returns a target 

classification while a pixel count lower than the threshold returns a false target 

classification.   
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3.2.3 Reporting 
 

For the user, the most visual step in the algorithm is how the search results are 

reported.  This tracking script will use a Matlab figure scaled to the size of the sensor 

footprint to symbolically display locations of true and false targets.  If the system thinks 

that it is seeing a target, it will display a red star at the object’s centroid as shown in 

Figure 20. 
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Figure 20. CMUcam2 GUI: True Target Detection  

If the system thinks that it is seeing a false target, the object’s centroid will be 

represented as green star as shown in Figure 21.   
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Figure 21. CMUcam2 GUI: False Target Detection 

Other target information, such as brackets showing the target’s upper left and lower right 

bounds will also be displayed.  To avoid confusion and overly busy figures, once an 

object leaves the sensor’s field of view, it will disappear off of the figure.  However, the 

tracking algorithm will still keep a record of the number of target colored pixels for that 

frame capture as well as the classification of that object.  

3.3 Summary 

Creating an ATR algorithm to complete the wide area search is the most critical 

step in the successful development of the surrogate system.  This process outlines how 

the sensor will see the target and what characteristic will be used to make targeting 
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decisions.  Further, it lays out the process that the software must follow to scan the search 

area and classify as well as report any object encounters.  Although, the size, shape, and 

color of the objects are important, the software used with the sensor is the heart of the 

autonomous target recognition because it must process sensor data and make the ultimate 

target or no target decision.   

Chapter 4 will combine the concepts from Chapter 1, the hardware from Chapter 

2, and the ATR algorithm development from Chapter 3 to run surrogate vehicle 

experiments to build ROC curves as well as complete a dynamic scaling analysis.   
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4. Surrogate Vehicle ROC Curve Development and Dynamic Scaling Analysis 

4.1 Surrogate Vehicle Search System Initialization 
 

Each time the surrogate vehicle search system is used to collect data, all of its 

component must be initialized.  To complete this process, each of the system components 

must be powered on and checked to ensure they are communicating properly with one 

another.   Below is a short description of each step in the initialization process.   

System Initialization Process 

1. Ensure that the laptop has the Kestrel Autopilot’s Commbox plugged into the 
bottom USB port and the ground station Aerocomm wireless transceiver is 
plugged into the top USB port.  With both peripherals plugged in, open the 
Virtual Cockpit Software and “tracker.m” script in Matlab (provided in 
Appendix B.2). 

 
2. Power on Commbox and check voltage reading in message window (Voltage 

should be greater than 10 V and in green font) 
 
3. Power on Radio Transmitter and verify the “RC” box is checked in the panel 

above the message center in the Virtual Cockpit GUI.   
 
4. Power on the onboard vehicle electronics using the single power switch wired 

to the Li-Po batteries.  When the main power switch is turned on, the Kestrel 
Autopilot, Aerocomm wireless transceiver, and CMUcam2 should all power 
on.  

 
5. Check the Tamiya 1/20th scale radio controlled dump truck steering by 

toggling channel 1 (right joystick on transmitter) left and right. Check throttle 
by moving left joystick forward and back 2-3 detents (Check throttle only 
when the vehicle is in an open space where there are no obstructions). 

4.2 Sensor Characterization 
 

To experimentally build a ROC curve for the surrogate vehicle, the target must 

first be characterized using the surrogate vehicle’s sensor so that the ATR algorithm can 

properly classify objects against the background of the area it will be searching.  This 
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process consists of determining the color of the objects that should be classified as targets 

or false targets and then determining the pixel threshold that must be exceeded for the 

object to be classified as a target.   

4.2.1 Target Color Characterization 
 

To determine the target/false target color, a target disk is put within the field of 

view of the camera with the camera bore angle set to the same angle to be used during the 

searches.  Its RGB minimum and maximum values are read after capturing a frame.  The 

process is repeated at 6 different points within the field of view to capture all variations in 

the target’s color as seen in Figure 22.  

 

Figure 22. Target Color Characterization Locations 

Since the CMUcam2 comes with a GUI that already calculates the minimum and 

maximum RGB values for pixels within a certain range, it will be utilized to find the 

target color.  It is important to complete this process with the target set out against the 

background to be used during the search as the RGB ranges of the target color will 

change against different backgrounds due to changes in the amount of light reflected.  

The red, green, and blue pixel intensity ranges for the orange objects to be used in this 

research are shown in Table 7.   

 

 

1 2 3

4 5 6
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Table 7.  Target Color Minimum and Maximum RGB Values 

 Red Green Blue 
Position Min Max Min Max Min Max 

1 210 255 97 157 0 46 
2 210 255 137 197 0 46 
3 210 255 115 175 0 46 
4 210 255 92 152 0 46 
5 210 255 80 140 0 46 
6 210 255 85 145 0 46 

Average 210 255 101 161 0 46 
Extreme 210 255 80 197 0 46 

 
It should be noted that since the object’s color is orange, its highest color intensity will be 

red.  The biggest color intensity variation comes from the green intensity values as they 

range from 80 to 197 depending on the object’s location within the sensor footprint.  The 

blue intensity stays relatively constant regardless of where the object is placed within the 

frame.  It is important to use the whole range of intensity values for all three colors in the 

search algorithm because the object should be fully tracked regardless of its position 

within the frame.  

4.2.2 Surrogate Vehicle ROC Curve Determination 
 

For this research, multiple ROC curves will be created for comparison.  The first 

will be created by searching an area the size of the sensor footprint with zero velocity 

with a false target that is 2.5 inches in diameter and the true target is 3.25 inches in 

diameter.  To explore the effect of target size, the second curve will be developed from a 

false target of the same size with a true target that is 4.75 inches in diameter.  For these 

cases, a target will be placed in each of the six spots in Figure 22 and 100 frames will be 

captured for each placement.  The process is then repeated with the false targets for a 

total of 1200 frame captures.   
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In the third case, the surrogate vehicle complete 5 straight line runs across the 

length of the search area while searching for the 4 true targets and 4 false targets and then 

1 true target and 1 false target will be removed to verify the results are repeatable.  To 

ensure the sensor works correctly with the algorithm, all targets and false targets will be 

distributed along the search path such that there is only object in the sensor’s field of 

view at any one time.  The width of the search path will be restricted to the front width of 

the sensor footprint so each true and false target has a chance for detection.   

Once the detection data is collected for both cases, the next step in the analysis is 

to vary the threshold so that the ROC curve points can be determined.  For both cases, the 

initial PTR and 1-PFTR characterization will come from setting the pixel threshold to be 

10% below the maximum number of pixels that the sensor can detect for a false target.  

The reason to set the initial threshold smaller than the maximum size of the false target is 

to ensure that the experimental ATR system will give false positives so that that a 

confusion matrix can be developed.   

Theoretically, this value can be calculated from the equations (12) through (22) in 

sections 3.1.1 and 3.1.2 as shown below for a false target with a 1.25 inch radius (2.5 

inch diameter).  The Matlab code for this calculation is shown in Appendix B.1.  

Object vertical angle from equation (12), 

°− =−
+

= 27.9)(tan 1 αβ
h
Ld obj  

 
 
 

Vertical pixels on object from equation (13), 

07.43* ==
VFOV

icalPixelsCameraVertPObjVert β  
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Front object horizontal angle from equation (14), 
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*5.
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obj

obj
obj s
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χ  

Rear object horizontal angle from equation (15), 
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Front horizontal pixels on object from equation (16), 

41.20*arg ==
θ

χ lszontalPixeCameraHoriP tObjHoriz  

Rear horizontal pixels on object from equation (17), 

78.22* ==
θ

χ lszontalPixeCameraHoriP bBHoriz  

Upper left object bounding pixel x coordinate from equation (18), 
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Upper left object bounding pixel y coordinate from equation (19), 
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Lower right object bounding pixel x coordinate from equation (20), 

89.54
2

=
+
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Lower right object bounding pixel y coordinate from equation (21), 

143== icalPixelsCameraVertyLR  

Theoretical object pixel area from equation (22), 
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Experimentally, the simplest way to calculate the maximum number of pixels 

detected for a false target is to place a false target within the CMUcam2’s field of view as 

shown in Figure 23.   

 

Figure 23. False Target Location for Maximum Pixel Detection 

 
The frame capture in Figure 23 resulted in 800 pixels on the false target as well as very 

similar centroid and bounding coordinates to those determined theoretically.  Table 8 

summarizes both the theoretical values and the experimental values for the maximum 

number of pixels that the sensor can put on a false target.  Since the number of pixels is 

within 15%, the theoretical equations seem to be accurate.      

Table 8. Maximum False Target Pixels 

 Maximum False Target Pixels 
 Theoretical Experimental 
# of Pixels 930.3 800 
x-centroid 43.5 44 
y-centroid 121.46 121 
x-upper left  33.29 34 
y-upper left  99.93 102 
x-lower right 54.89 54 
y-lower right 143 142 

 

With an experimental value of 800 for the maximum number of false pixels, the 

initial threshold used to experimentally determine a PTR and 1-PFTR is 720 pixels.  Table 9 
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shows the PTR and 1-PFTR values at the initial threshold for both static cases where the 

target size was varied and the velocity cases where the number of targets and false targets 

were varied.  PTR was calculated by dividing the total number of true target detections 

(when a true target was in the footprint) by the total number of true target encounters. 1-

PTR was calculated by dividing the total number of false target detections (when a true 

target was in the footprint) by the total number of true target encounters.  PFTR was 

calculated by dividing the total number of false target detections (when a false target was 

in the footprint) by the total number of false target encounters.  1-PFTR was calculated by 

dividing the total number of true target detections (when a false target was in the 

footprint) by the total number of false target encounters.   

Table 9. Initial Threshold Sensor Characterization 

 Target Threshold=720 pixels 
  Static 1 Static 2 Velocity 1 Velocity 2 

PTR 55.77% 77.78% 80.00% 78.57% 
1-PFTR 11.89% 0.00% 10.53% 20.00% 
PFTR 88.11% 100.00% 89.47% 80.00% 
1-PTR 44.23% 22.22% 20.00% 21.43% 

 

To create the experimental ROC curves for each of the cases, the target thresholds 

were varied enough to get the (0,0) point and the (1,1) point on the curve.  The largest 

variation occurred with the Static 2 case where the target diameter was 4.75”.  It required 

the threshold to be dropped to 8 pixels to get the (1,1) point and due to the large target 

size, the threshold needed to be raised to 2560 to get the (0,0) point.  The three other 

scenarios had threshold windows less than this case.   
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The resulting ROC curves are presented in the next two figures.  Figure 24 was 

created from the first two runs with the sensor in a static position at a 45° sensor bore 

angle.  The first ROC curve was built from data collected for a 3.25” true target and a 

2.5” false target.  The second ROC curve was built from data collected for a 4.75” true 

target and 2.5” false target.  These two curves demonstrate that as the target size gets 

bigger while using the same ATR algorithm, the sensor will have better performance.  

This is expected because c, the ROC parameter, normally increases with more pixels on 

target.   
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Figure 24. Surrogate Vehicle Static ROC Curves  

Figure 25 shows a pair of ROC curves for the surrogate vehicle conducting a straight line 

search at 0.5 ft/s with 3.5” true targets and 2.5” false targets.  The slow velocity was 

chosen to ensure that the sensor was able to capture the objects in multiple frames.  These 

two curves produced similar PTR results for 1-PFTR values between 0 and 0.6 giving 
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confidence that the results are repeatable for the CMUcam2 with the same sensor 

geometry, target size, and search speed.  Also, for reference, Equation 1 was used to 

characteristic plot a ROC curve with c = 10.   
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Figure 25. Surrogate Vehicle ROC Curves for Vehicle Velocity = .5 ft/s 

To truly see the effects of target size and sensor velocity on the sensor 

performance, all four ROC curves have been plotted together in Figure 26.  When the 

vehicle is moving at a slow velocity, it seemed to perform slightly better for lower values 

of 1- PFTR than the static case with 3.25” diameter true targets.  However, further right on 

the ROC curves, the static cases reached a PTR of unity when 1-PFTR was less than 0.6 

while the velocity case got to a 1-PFTR of 0.7 before PTR reached unity.    The best sensor 

performance found during this research seemed to be the static case with 4.75” diameter 

true targets.  As mentioned above, this is to be expected since c is a function of pixels on 

target and characteristic target length divided by search vehicle velocity.  
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Figure 26. Surrogate Vehicle ROC Curves 

4.3 Surrogate Vehicle Dynamic Scaling 

4.3.1 Dynamic Scaling Overview 
 

As discussed earlier, the purpose of this research is to build a surrogate vehicle 

that is dynamically similar to an actual UAV with known sensor performance.  To verify 

the dynamic scaling concepts previously presented, a dynamic scaling analysis will be 

performed assuming that both the surrogate and nominal vehicle use the same sensor at 

the same bore angle.  Note that the nominal vehicle has a variable sensor rate (i.e. frames 

per second), but the surrogate was assumed to be a constant 6 frames per second.  

Furthermore, this assumption enables target size to be scaled between the vehicles.  If the 

sensors were different, then matching pixels on target would be the only parameter that 

needed to be matched to be able to match sensor performance.   
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From Chapter 1, the nominal vehicle for this analysis will be the Sig Rascal 110 

Radio Controlled aircraft.  It will be operating at 100’ AGL, 40 kts, with the sensor bore 

angle of 45 degrees, searching for targets with an 8’ characteristic diameter.  Two 

different overlap cases will be examined.  The first case will determine the surrogate 

velocity needed to ensure full search area length coverage, but no overlap.  The second 

case will include frame overlap at least as long as the target’s lengthwise dimension.   

4.3.2 Case 1: No Frame Overlap 
 

Because this search must exhaustively cover the whole length of search area, the 

maximum airspeed of the Rascal can be no faster than what is needed to ensure where 

consecutive frames will abut as shown in Figure 27.  While this guarantees 100% 

coverage of the length of the search area, the search will not cover 100% of the width of 

the search area due to the triangular dead spots on each of side of the footprint due to a 

sensor bore angle not equal to 0°.  If targets are wholly or partially encompassed in these 

dead spots, at least some part of them will be missed by the sensor resulting in a false 

target categorization or no detection.  

 

Figure 27. Vehicle Sensor Footprint in Two Consecutive Frames Without Overlap  
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For searches with no target overlap, Equation 22, taken from (Mike, 2006), can be 

used to solve for the sensor refresh rate needed to conduct a search at the specified 

operating speed once the footprint length for the sensor has been established, through the 

sensor geometry.     

refresh
overlapnoreq t

zV =−−                                                        (23) 

This same equation can be used to determine the velocity of the surrogate vehicle once its 

sensor footprint is known, since it has a fixed sensor refresh rate by assumption.  

4.3.3 Case 2: Target Lengthwise Overlap 
 

Figure 28 shows consecutive frames when the vehicle is moving slow enough for 

each frame to overlap part of the previous frame.  Notice that when overlap exists in the 

sensor footprint geometry, each frame will capture a portion of the previous frame near 

its bottom.  As the overlap becomes larger, the dead spot triangles on the outer edges of 

the footprint will become smaller.  Further, making the overlap at least as long as the 

target will ensure that the target’s lengthwise dimension is wholly captured in at least one 

frame.  
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Figure 28: Vehicle Sensor Footprint in Two Consecutive Frames With Overlap 

 For searches with overlap, the maximum velocity equation is a bit more 

complicated because it contains an overlap factor on the footprint length.  This factor is 

equivalent to the percent of the sensor footprint length that the vehicle will move in the 

time it takes to process one sensor frame, trefresh.  Equation 24 below shows the overlap 

factor and Equation 25 shows the required velocity given this overlap.   

(1 )L
overlap

O
x z

z
= −                                                                (24) 

refresh

overlap
overlapreq t

x
V =−                                                                   (25) 

 

4.3.4 Π8 Development: Search Vehicle Velocity Frame Overlap Factor  
 

In order to maintain dynamic similarity between the nominal vehicle and the 

surrogate, the frame overlap must be accounted for in the scaling process.  Thus, given 

the operating velocity of the nominal vehicle and its frame overlap (or equivalently, its 

sensor refresh rate), the surrogate must be scaled to have an equivalent frame overlap. 

Therefore, another pi group (Π8) is developed to account for frame overlap and is shown 
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in Table 10. Then, given the geometry and sensor refresh rate of the surrogate, the 

required search velocity of the surrogate can be obtained from Π8.  

 
Table 10. Search Velocity Frame Overlap Factor, Π8 

Variable (units) Pi Group #/Ratio  

V (L/T) Π8 = 1-(Vtrefresh/z) 

4.3.5 Pi Group and Surrogate Vehicle Dynamics Calculations 
 

Upon developing Π8, the nominal vehicle’s given operating conditions can be 

scaled to an operating condition for the surrogate vehicle that will be dynamically similar 

and hopefully within the surrogate vehicles operating range.  Table 11 summarizes the 

values of seven of the eight pi groups for the 100% overlap case with the Sig Rascal 110 

using the equations in the far right column of Table 4.  The no overlap case has 

equivalent values for Π1- Π6, but Π7 and Π8 will go to zero because there will be no frame 

overlap.  The ROC Curve factor, Π4, presented in (Abeygoonewardene, 2006), was 

omitted for this analysis, which was possible due to the fact that the same sensor and 

ATR algorithm are used on the normal and surrogate vehicle.   
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Table 11. Pi Group Scaling Factors for Sig Rascal 110 

Pi Group Name Ratio Value 

1 
Normalized 

Elevation Field of 
Regard 

z/d 2.098423447 

2 
Normalized 

Azmuthal Field of 
Regard 

w/d 2.674130978 

3 Normalized Vehicle 
Turn Capability d/r 0.152548604 

4 ROC Curve Factor V*c/(kc_bar) N/A 

5 Pixel Density Range ρT*d2 2,828 

6 Target Detection 
Size Dt/d 0.140818713 

7 Footprint Overlap OL/d 0.140818713 

8 Velocity Factor 1-(V*trefresh/z) 0.06710691 

 
Once the values of the pi groups are known for a specified nominal case, the 

operating conditions for the surrogate search vehicle can be directly calculated.  These 

calculations start with determining its sensor dead band by multiplying Π3 by the 

vehicle’s minimum turn radius (assuming that minimum turn radius is independent of 

velocity).  A simple turn radius test at low speeds (< 1 mph) showed the minimum turn 

radius to be roughly .996 meters.  

From Π3, the surrogate vehicle sensor dead band, 

meters 152.*3 =Π= rd  

  As seen above in Table 11, the surrogate vehicle’s footprint length, front footprint 

width, pixel density, true target, frame overlap, and velocity can be determined by 
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multiplying the appropriate pi group by the surrogate sensor’s dead band as shown in the 

following calculations for 100% target overlap.  

From Π1, the surrogate vehicle footprint length, 

meters 319.*1 =Π= dz  

From Π2, the surrogate vehicle footprint length, 

meters 406.*2 =Π= dw f  

From Π5, the surrogate vehicle sensor pixel density, 

2
2
5 erpixels/met 256,122=

Π
=

dTρ  

From Π6, the surrogate vehicle desired true target characteristic diameter, 

meters 021.*6 =Π= dDT  

From Π7, the surrogate vehicle sensor frame overlap length, 

meters 021.*7 =Π= dOL  

From Π8, the surrogate vehicle velocity needed for scaled frame overlap, 

ondmeters/sec 79.1
)1(

* 8 =
Π−

=
refresht

zV  

Table 12 and Table 13 summarize the parameters for the nominal vehicle and the 

corresponding surrogate vehicle parameters required for the surrogate to perform a 

dynamically similar search.  Table 12 shows the results when no frame overlap is 

required, while Table 13 mimics the above calculations to show both vehicles operating 

conditions when 100% target lengthwise frame overlap is needed.    
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Table 12. Vehicle Dynamics (No Overlap) 

Vehicle/Sensor Parameter Sig Rascal -Nom Truck -Surg 

Velocity (V), m/s 20.57776977 1.914811365 

Needed g limit, m/s2 1.07 1.06809794 

Turn Radius (r), m 113.5105791 0.99695 

Normal Operating Altitude of the 
Sensor (h), m 30.48 0.267702238 

Frame Overlap (OL), m 0 0 

Pixel Density (ρ), pixels/m2 9 122,256 

Dead Range of Sensor (d), m 17.3158804 0.152083331 

Footprint Front Width (w), m 46.30493219 0.406690747 

Footprint Length (z), m 36.33604943 0.319135227 

Swath Angle (θ), degrees 45.13401816 45.13401816 
Vertical Field of View (VFOV),  

degrees 30.7976395 30.7976395 

Sensor Bore Angle (χ), Degrees 45 45 
Desired Target Characteristic 

Diameter (Dt), m 2.4384 0.021416179 

Camera Refresh Rate, s 1.765791426 0.166666667 
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Table 13. Vehicle Dynamics (100% Target Overlap) 

Vehicle/Sensor Parameter Sig Rascal -Nom Truck -Surg 

Velocity (V), m/s 20.57776977 1.786314291 

Needed g limit, m/s2 1.07 1.051982707 

Turn Radius (r), m 113.5105791 0.99695 

Normal Operating Altitude of the 
Sensor (h), m 30.48 0.267702238 

Frame Overlap (OL), m 2.4384 0.021416179 

Pixel Density (ρ), pixels/m2 9 122,256 

Dead Range of Sensor (d), m 17.3158804 0.152083331 

Footprint Front Width (w), m 46.30493219 0.406690747 

Footprint Length (z), m 36.33604943 0.319135227 

Swath Angle (θ), degrees 45.13401816 45.13401816 
Vertical Field of View (VFOV),  

degrees 30.7976395 30.7976395 

Sensor Bore Angle (χ), Degrees 45 45 
Desired Target Characteristic 

Diameter (Dt), m 2.4384 0.021416179 

Camera Refresh Rate, s 1.64729462 0.166666667 

 

Since the surrogate’s sensor frame rate is fixed at 6 frames per second, its velocity 

changes from 4.28 miles per hour in the no overlap case to 3.99 miles per hour in the 

100% target overlap case.  Both of these cases have reasonable surrogate velocities that 

can be demonstrated in later research as well as actually flying the nominal vehicle to 

fully validate this dynamic scaling model.  Appendix A shows different variations of 

surrogate and nominal vehicle parameters as nominal operating conditions change to give 
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an idea of how the sensor geometry changes with increasing and decreasing altitude and 

velocity of the nominal vehicle.       

4.4 Summary 

Chapter 4 brought together ATR, dynamic scaling, and the actual surrogate 

vehicle to show that it is not only possible to experimentally characterize the performance 

a sensor, but it is also possible to adjust the performance by changing search parameters 

such as target size and search vehicle velocity.  Theoretical calculations showed that 

object pixel information can be accurately predicted by knowing the sensor bore angle, 

object size, and its position within the footprint.  The dynamic scaling analysis also 

demonstrated that the surrogate vehicle developed for this research should dynamically 

scale to existing ANT Center UAVs flown with an identical sensor at nominal operating 

conditions.  Using the same dynamic scaling analysis, any other UAV that can match the 

nominal conditions (altitude, airspeed, and sensor) will also be dynamically similar to the 

surrogate vehicle.   
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5.  Conclusion and Recommendations 

5.1 Summary 

The research presented in this thesis can be broken down into four categories.  

The first is the development of an experimental platform that will meet the needs of 

future AFIT autonomous wide area search studies to include cooperative autonomous 

wide area search studies.  The second is the development of an autonomous target 

recognition algorithm (ATR), incorporating sensor geometry, sensor characteristics, and 

target sizing to build ROC curves for a given operating condition.  Multiple ROC curves 

were developed for the sensor to show the effects of different variables on ATR 

performance.  The third category of research is the further investigation into the dynamic 

scaling of wide area search vehicles, based on the work of Captain Jeevani 

Abeygoonewardene.  The last category is the development of further sensor geometry 

calculations to predict the maximum number of pixels a sensor will return with an object 

horizontally centered at the bottom of its field of view.    

5.1.1 Experimental Platform Development 
 

This research successfully developed a surrogate vehicle test bed that can be used 

to conduct autonomous single UAV experiments as well as multiple UAV cooperative 

control experiments.  Because the vehicle was built in such a manner that the UAV 

autopilot, wireless transceiver, and camera are mounted together on the sensor deck, this 

vehicle electronics package can be installed on any radio controlled vehicle with a 
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steering and throttle servo.  Furthermore, since the autopilot was intended for aircraft, it 

will be possible to transition this to a UAV surrogate.  

5.1.2 ATR Algorithm and ROC Curve Development 
 

An ATR algorithm was developed to search, classify, and report targets during an 

experimental wide area search.  This algorithm used the object size and color against the 

search background to determine if it was a target or false target based on the threshold set 

by the size of the known false targets.  Multiple runs of a static search and moving search 

collected data to build four experimental ROC curves for the ATR system developed at 

different operating conditions.  While these curves were not nearly as smooth as the 

traditional ROC curves seen in Chapter 1, they confirmed the same general trend that as 

PTR increases, 1-PFTR also increases.  Also, the plots validated theoretical results claiming 

that as target size and pixels on target increase, the ATR performance improves.   This 

finding demonstrated that the algorithm used in this thesis, although not refined, is a good 

starting point for future wide area search studies. Hopefully, with more research and data 

collection, the experimental ROC curves will eventually become smooth enough to better 

fit theoretical curves with specific c values using Equation1.   

5.1.3 Dynamic Scaling 
 

The dynamic scaling analysis showed that it is feasible to use the Tamiya 1/20th 

scale RC Dump Truck as a surrogate vehicle to the Sig Rascal or any other UAV with 

similar operating conditions.  The truck can conduct a 100% target overlap search at 3.99 

miles per hour with 0.84” diameter targets that scales to a Sig Rascal flying at 40 knots, 

100’ AGL searching for 8’ diameter targets.  The only change to be made to the Rascal 



69 

would be to manually adjust the refresh rate on its sensor so that it can maintain the 

specified 40 knot airspeed regardless of the required frame overlap percentage.   

A search vehicle velocity overlap pi group was developed to ensure that the 

surrogate vehicle and nominal vehicle both have footprints that overlap the same 

percentage of the target length.  While this research used surrogate vehicle velocity as the 

control to change the percentage of frame overlap, similar to the nominal vehicle, the 

surrogate vehicle’s velocity could be fixed and its sensor frame refresh rate could be 

altered if the sensor had this capability.   

5.1.4 Further Sensor Geometry Development 
 
 While the majority of this research focused on building and completing 

preliminary testing of an experimental platform, some theoretical concepts were also 

investigated.  The sensor footprint geometry was examined for the case when the sensor 

is not normal to the surface it is viewing.  This trapezoidal footprint required both a front 

and back footprint width to be calculated and also skewed the shape of each sensor 

pixels.   Also, the determination of the maximum number of pixels of an object in the 

frame turned into a very cumbersome process of finding angles, pixel densities, and 

coordinates.  The fact that these theoretical calculations were able to accurately predict 

experimental results demonstrated that the sensor system geometry used in this research 

is well modeled.    

5.2 Recommendations for Future Research  
 
Since this research resulted in both a wide area search surrogate platform and a 

dynamic scaling analysis, future students have several possibilities when continuing wide 
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area search studies.  However, the first recommendation is to run several more 

experiments with the existing surrogate wide area search vehicle to show that the ROC 

curves presented in this research accurately depict the performance of the ATR system 

developed for the given operating conditions.  Upon validation of those curves, the 

experiments can be taken one step further to determine the probability of target attack 

(PTA) as a function of PTR to determine how well it matches up with wide area search 

simulations.  

A second recommendation is to examine how the performance of the sensor 

changes when using object color to set the target/false target threshold instead of object 

size.  In cases where the targets need to be very small to get the needed sensor 

performance to scale to the nominal vehicle, using different colored targets and false 

targets might provide an easier route to matching sensor performance.  The target/false 

target threshold would be set by changing the red, green, and blue pixel intensity values 

in the sensor tracking script and running searches with targets and false targets of equal 

size, but different closely matching colors.  As the pixel intensity values are changed, the 

PTR and 1-PFTR values will change so that ROC curves can be developed.      

Another useful recommendation is to implement technology to detect the 

surrogate sensor’s bore angle, pan angle, and height off of the surface to be searched.   

These measurements would ensure that the sensor’s actual experimental operating 

conditions always match the conditions used in any theoretical calculations, simulations, 

or dynamic scaling analyses.  Specifically, it is necessary to match given nominal Sig 

Rascal operating conditions to the surrogate ground vehicle’s actual operating conditions 

through dynamic scaling with a high level of accuracy to make a dynamically similarity 
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claim.  With this technology, ROC curves can be developed for both the surrogate vehicle 

and the nominal Sig Rascal using the theoretically calculated operating velocities, 

altitudes, and target sizes.  With identical sensors and sensor bore angles, the correlation 

between these two sets of curves will give future researchers additional insight into the 

dynamic scaling techniques discussed in this research.   

Integrating target classification feedback into the autopilot using a steering 

correction angle will enable the surrogate vehicle to engage a target by navigating 

towards it.  Upon driving over the target, another steering correction should be given to 

the vehicle redirecting it back in the original search direction parallel to the original 

search path.  This implementation will experimentally test Capt Abeygoonwardene’s 

wide area search simulation (Abeygoonewardene, 2006) so that the results for a similar 

target/false target field can be compared and contrasted.   
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Appendix A. Dynamic Scaling Variation of Parameters 

A.1 Nominal Vehicle Required Sensor Refresh Rate as a Function of Velocity 
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A.2 Nominal Vehicle Footprint Size as a Function of Altitude (AGL) 
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A.3 Surrogate Vehicle Footprint Size as a Function of Altitude (AGL) 
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A.4 Surrogate Vehicle Target Characteristic Diameter as Nominal Vehicle Target 
Characteristic Diameter  
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Appendix B. Matlab Code 

B.1 False Target Maximum Pixel Predictor Code 
 
% Capt Justin Rufa 
% ENY Thesis Winter 2007 False Target Max Pixel Predictor 
clc; clear all; close all; 
  
% Camera's Vertical Field of View Properties 
pixels_length=143; % Camera's vertical lines of resolution in pixels 
VFOV=deg2rad(30.79); % Camera's vertical field of view in degrees 
vert_pixels_per_degree=pixels_length/rad2deg(VFOV); %Camera's vertical 
pixels per degree 
bore_angle=deg2rad(45); % Camera's Bore Angle (Vertical Centerline) in 
degrees 
camera_height=10.5; % Camera's height off ground in inches 
depression_angle=deg2rad(90)-bore_angle-.5*VFOV; % Camera's depression 
angle measured from horizontal in radians 
slant_angle=bore_angle-.5*VFOV; %Camera's slant angle measured from 
vertical in radians 
dead_band=camera_height*tan(slant_angle); % Camera's deadband in inches 
footprint_length=camera_height/tan(depression_angle)-dead_band; %Camera's 
footprint length in inches 
slantback=sqrt(camera_height^2+dead_band^2); %Camera's Slant Length to 
back of footprint in inches 
slantfront=sqrt(camera_height^2+(dead_band+footprint_length)^2); %Camera's 
Slant Length to front of footprint in inches 
  
% Camera's Horizontal Field of View Properties 
pixels_width=87; % Camera's horizontal lines of resolution in pixels 
theta=deg2rad(45.13); % Camera's horizontal field of view in degrees  
horiz_pixels_per_degree=pixels_width/rad2deg(theta); %Camera's horizontal 
pixels per degree 
footprint_backwidth=2*slantback*atan(.5*theta); % Camera's rear footprint width 
in inches 
footprint_frontwidth=2*slantfront*atan(.5*theta); % Camera's front footprint width 
in inches 
rho_f=footprint_frontwidth/pixels_width; % Camera's front footprint width inches 
per pixel 
rho_b=footprint_backwidth/pixels_width; % Camera's rear footprint width inches 
per pixel 
  
% Circular Target Properties 
target_radius=1.25; % Target Circular Radius in inches 
    % Vertical Properties 
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    slanttarg=sqrt(camera_height^2+(dead_band+2*target_radius)^2); % Target's 
Slant Length from back of footprint to front ot target in inches 
    target_vertangle=atan((2*target_radius+dead_band)/camera_height)-
slant_angle; % Target's vertical angle in radians 
    target_vert_pixels=rad2deg(target_vertangle)*vert_pixels_per_degree; % 
Target's vertical pixels 
    uly=143-target_vert_pixels; % Target's upper left y coordinate 
    lry=143; % Target's lower right y coordintate 
    % Horizontal Properties  
    target_backangle=2*atan(target_radius/slantback); % Target's horizontal rear 
angle in radians 
    target_targangle=2*atan(target_radius/slanttarg); % Target's horizontal front 
angle in radians 
    target_backhoriz_pixels=rad2deg(target_backangle)*horiz_pixels_per_degree; 
% Target's rear width in pixels 
    target_fronthoriz_pixels=rad2deg(target_targangle)*horiz_pixels_per_degree; 
% Target's front width in pixels 
    ulx=43.5-target_fronthoriz_pixels/2; % Target's upper left x coordinate 
    lrx=43.5+target_backhoriz_pixels/2; % Target's lower right coordinate 
    
Area=(ulx-lrx)*(uly-lry); % Target's Predicated Number of Pixels 
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B.2 CMUcam2 Matlab Search and Classify Algorithm 
 
%########################################################### 
%#########--MATLAB to CMUcam2 Matlab Tracking Script-############### 
%################--by Lee von Kraus--####################### 
%#############--modified by Capt Justin Rufa--############## 
%########################################################### 
%Note #1: 
%If using the CMUcam java GUI to grab a frame and find the # values for a color 
you want to track,  
%notice that the color #s (mins and maxs) are NOT in the same order as they 
are in the TC command! 
%Note #2: 
%Make sure to turn on pole mode 
%('PM 1') this way, you're constantly getting up to date data, and not some stuff 
from the buffer. 
clc; clear all; close all;  
  
% Set up CMUcam2 Serial Port 
ser=serial('COM6'); % Specify COM Port 
set(ser, 'BaudRate',115200, 'DataBits', 8,'Parity','none','StopBits',1, 
'FlowControl','none',...  
'Terminator', 'CR','TimeOut', .5); %Set up serial port properties 
  
% Initialize Serial Port Connection 
fopen(ser);                         % Open Serial Port 
fprintf(ser, '%s\r', 'RM 2');       % Turn Off ACKs and NCKs 
fprintf(ser, '%s\r', 'PM 1');       % Turn Polling Mode On 
     
% Create Camera Field of View Plot 
errorInd=[]; 
hold on     
xlim([1 87]); 
ylim([1 143]);  
set(gca,'YDir','reverse') 
title('AFWASTER Field of View'); 
xlabel('Field of View Width (pixels)'); 
ylabel('Field of View Length (pixels)'); 
  
plot(43.5*ones(143,1), linspace(1,143,143), '--k'); % Plot Vertical Cross hairs 
plot(linspace(1,87,87),71.5*ones(87,1),  '--k');    % Plot Horizontal Cross haris 
pause(eps); 
searches=125;         % Specify # of frames for the CMUcam 2 to capture 
threshold=800*.9;   % Specify target threshold # of pixels 
list=[]; 
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list2=[]; 
list3=[]; 
list4=[]; 
list5=[]; 
list6=[]; 
tic     % Start Search Clock 
     
% BEGIN SEARCH 
for i=1:searches   
  
          fprintf(ser, '%s\r', 'TC 210 255 80 197 0 46');   % Specify Target Color 
  
         cam_data= fscanf(ser,'%*s %d %d %d %d %d %d %d %d')';  
         if length(cam_data)== 8 
             A(i,1:8)=cam_data; 
              
            % Add Target Area to Tracking Data 
            A(i,9)=(A(i,5)-A(i,3)).*(A(i,6)-A(i,4)); 
              
         else 
             errorInd(end+1)=i; 
             A(i,:)=[1 0 0 0 0 0 0 0 1]; 
         end 
        
   if A(i,1) & A(i,2) > 0  
% Plot Target Centroid 
    if A(i,9) >= threshold  
    list(end +1)=plot(A(i,1), A(i,2), '*r'); 
    %     % Plot Vector to Center of Target 
    list2(end +1)=plot(linspace(43.5,A(i,1),10),linspace(143, A(i,2),10), '--r'); % 
From Camera 
%     theta=atan(((A(i,1)-3)-43)/(143-A(i,2)))*180/pi 
    else A(i,9) < threshold 
    list(end+1)=plot(A(i,1), A(i,2), '*g'); 
    end 
% % Plot Target Bounds 
    list3(end+1)=plot(linspace(A(i,5),A(i,5)-5,5), (A(i,6))*ones(5,1), 'b'); % Upper 
Left Horizontal 
    list4(end+1)=plot(ones(5,1)*(A(i,5)), linspace(A(i,6),A(i,6)-5,5), 'b'); % Upper 
Left Vertical 
    list5(end+1)=plot(linspace(A(i,3),A(i,3)+5,5), (A(i,4))*ones(5,1), 'b'); % Lower 
Right Horizontal 
    list6(end+1)=plot(ones(5,1)*(A(i,3)), linspace(A(i,4),A(i,4)+5,5), 'b'); % Lower 
Right Vertical 
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   else  
       if ~ isempty(list)| ~ isempty(list2) 
           delete(list); 
           delete(list2); 
           delete(list3); 
           delete(list4); 
           delete(list5); 
           delete(list6); 
       end 
       list=[]; 
       list2=[]; 
       list3=[]; 
       list4=[]; 
       list5=[]; 
       list6=[]; 
  
   end 
   pause(eps)    
   
    end 
% END SEARCH 
  
    fclose(ser);    % Close Serial Port 
Target_Reports=length(find(A(:,9)>threshold))   % Report # of Targets Identified 
a=toc; 
FPS=searches/a  % Report Search Frame per Second Rate 
%%%%%% END TRACKING SCRIPT%%%%%%% 
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Appendix C. Steering Control Calculations 

C. 1 Calculation of Object Centroid Angle, ψ, for Steering Correction 
 
As mentioned in Chapter 3, the search algorithm has the ability to determine the 

object’s centroid angle for steering correction.  With this angle, future research can 

implement commands to steer the vehicle directly towards an object that is classified as a 

target.  The process to calculate this angle is laid out in detail below.   

Similar to determining the geometry of the object area, this calculation involves 

both vertical and horizontal distance calculations shown in Figure 29.   

 
 

Figure 29. Object Centroid Angle Geometry 

The first calculation determines the vertical angle between the centroid of the 

object and the rear edge of the footprint, βcentroid.  To calculate this angle, the vertical 

pixel distance between the rear edge of the frame and the object centroid must be 

determined, given the centroid’s x and y coordinates in pixels. Both calculations are 

shown below in Equations 25 and 26.  
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Once βcentroid is known, it can be substituted into Equation 27 to solve for the vertical 

distance between the centroid of the object and the point mass representing the front edge 

search vehicle, b.  Note that d was previously determined by the geometry of the camera.  

( )1tanObjIn centroidb Y d h α β−= + = +                                     (28) 

 To determine the horizontal distance from the object centroid to the vertical 

centerline, a, a relationship between the pixel density per horizontal line and distance 

from the rear of the frame must be determined.  Since the number of pixels in reach row 

is known and the width of the rear edge and front edge of the frame are known, Equation 

28 gives the pixel density value at any point between the rear and front of the frame.  

f b

b
Yobj ObjIn

w w
w HorizontalPixels HorizontalPixels Y

HorizontalPixels z
ρ

−
= +                   (29) 

With the pixel density, the ground distance, a, between the vertical centerline of the 

frame and the centroid of the object is calculated in Equation 29. 

 

( )
2Yobj cent

HorizontalPixelsa Xρ= −                                    (30) 

Finally, knowing a and b, the object centroid angle, ψ, is given by Equation 30.  
 

)(tan 1

b
a−=ψ                                                   (31) 

If the centroid of the object is right of vertical centerline, it will result in a positive object 

centroid angle, while centroids left of the centerline will command a negative object 

centroid angle to steer the vehicle directly over top of the object.  
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